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Abstract

Transport delay in a multirate flight simulation envi-
ronment is examined. An equivalent systems model is de-
veloped that quantifies the contributions of individual com-
ponents and their sampled-data interactions. Mathematical
algorithms used in the discrete implementation are also con-
sidered, because they are important elements of a flight sim-
ulation system. The equivalent systems model was used to
demonstrate the consistency and accuracy of data obtained
in the flight simulation facility at Ames Research Center. It
showed that effective time delays in simulation models, in-
cluding delays in scene presentation to the pilot, are consid-
erably less than might be assumed by casual examination of
raw data obtained from component-level experiments.

Introduction

A total simulation system is rarely exercised in obtain-
ing time delay measurements. Notably, compensating algo-
rithms are usually disabled, and drive signals used in an in-
vestigation often bear little resemblance to pilot inputs. In
Ref. 1 (p. 14), for example, a step signal was sent through
an analog-to-digital converter (A/D) to produce a discrete
change in a computer generated image (CGI display). The
difference between the time of the command and time of
the response purportedly measured the system delay. Such
an experiment has several features which require interpre-
tation, in order to apply the results 1o the flight simulation
environment.
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First, during the A/D conversion process, a step input
has a uniform distribution within a sample interval. The sig-
nal also has an approximately uniform distribution within the
CGI computer, where compensating logic (which usually ac-
counts for asynchronous data transmittal between comput-
ers) cannot utilize discontinuous data. The resulting com-
pound distribution contributes as much as two computer cy-
cles of delay. This constitutes a major difference from the
actual simulation environment, where inputs are generally
sampled such that significant activity does not occur be-
tween sample intervals—a fundamental hypothesis of real-
time simulation. If the hypothesis fails, then the simulation
fails.

Second, in Ref. 1 specifically, since the signal was not
integrated, it coukd not be predicted to the end of the cycle, a
function normally handled by an integration process, as will
be discussed. This introduced an entire cycle of delay.

Third, recently developed CGI compensation logic,
used in flight simulation at Ames Research Cenier, requires
that CGI commands also be representative samples of con-
tinuous signals. Although the compeasation scheme was de-
veloped subsequent to the experiment of Ref. 1, its availabil-
ity at that time would not have influenced results, because of
the continuity requirement. Hence, a repeat of this particular
experiment today would still manifest the CGI pipeline de-
lay. However, because of the compensation algorithm, this
delay is not observed in flight simulation (over the frequency
range pertinent to handling qualities research).

Thus, the data of Ref. 1, although accurate, are nonethe-
less misleading because they indicate a delay on the order of
150 msec, whereas in the flight simulation environment at
Ames the effective delay is more like 15 msec.

A model of flight simulation systems is therefore
needed that quantifies the contributions of various delay
components and contains the proper algorithmic relation-
ships. For this reason an equivalent systems model (ESM)
has been developed. It reconstructs complete data paths
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in the simulation environment, where both algorithms and
sampled-data effects are important elements. To establish a
foundation for this material, the sampled-data phenomenon
is examined.

From the perspective of a discrete, multirate, man-
in-the-loop flight simulation, the sampled-data system dis-
cussed in this paper is outlined in Fig. 1. This figure illus-
trates the sampled-data elements of a simulation that are per-
tinent to the creation of a discrete realization from a contin-
uous system.

P*(s)

p*(t)

R*(s)
()

Q*(s),
p(t) q*(v),

— G(s) H(s)
T T/N T

p(z) 6(2), a(z),

—

r(z)

Fig. 1. Sampled-data system.

G(s) represents the multirate simulation model, sampled N
times for each input-output (J/O) cycle time T'. Because this
is a sampled system, the function G(s) consists of the prod-
uct of a model transfer function F'(s) and a data-hold func-
tion H;( s), as required in a data reconstruction process. This
will be discussed further in the section “The Discrete Mul-
tirate Model.” G(s) may, of course, consist of a network
of transfer functions, with some resultant equivalent data-
hold function. The symbol p(t) represents a pilot input, and
g*(t)n is a model output at the multirate level of computa-
tion. The final output r*(t) is sampled at the same rate as the
pilot input (the I/O rate). This is accomplished in the ESM
via a zero-order hold (low-pass filter) shown as He(s) in
Fig. 1.

Using the above outline, an ESM is developed for the
analysis of delays in flight simulation. Models of multirate
computer processes using z-transform notation are treated
first, using essential elements from sampled-data theory.

Input Sampler

Pilot control inputs are represented in Fig. 1 by the time
function p(t), here assumed continuous with Laplace trans-
form P(s). Neglecting, for the moment, converter dynam-
ics and possible prefiltering, the A/D operation consists of
a switch that samples the input every T seconds and deliv-
ers a pulse train of data to the digital computer. Since the
transfer function of a linear system is the Laplace transform
of the impulsive response of the system, at the sample points
the pulse transfer function is defined by the ordinary Laplace
transform.

“The pulse transfer function relates only the output
pulse sequence to the input pulse sequence. It does not re-
late the continuous output to the pulse sequence at the input”
(Ref. 2, p. 69). As an example of the sampling process, con-
sider the input sine function,

p(t) = sin(at)

Its pulse transfer function is obtained from any table of
Laplace transforms,

P(s) = a/(a2 +a%)

and is defined as producing a series of impulses represented
by the z-transform

sin(aT)
z~2cos(aT) + z~!

z)=Z{P(9)}=

“When a unit-impulse function is applied to a linear system
with transfer function P( a), the output of the system is sim-
ply the impulse response of the system” (Ref. 3, p. 74). To
examine the equivalent pulse train within a digital computer,
the z-transform is reduced to a difference equation using a
difference operator for powers of z,

Yis1 = 2¢08(aT)yi — Ya-1 + sin(aT) px

With quiescent initial conditions and a unit impulse for an
input, a trivial induction shows that at the sample points, for
alk >0,

ye = sin(akT)

Thus, in the process of sampling continuous data, the sam-
pler (perfect A/D converter) does not produce signal delay.

Interpolation

Consider the multirate system shown in Fig. 1, in which
N is assumed to be an integer. As will be shown in the sec-
tion “The Discrete Multirate Model,” the output of a multi-
rate system may be related to its input using z-transforms.

When the new sampling rate is higher than the origi-
nal sampling rate the process is called interpolation, because
samples of the original physical process are collated from a
reduced set of samples. In Fig. 1 the signal ¢*(t)y is sam-
pled at a rate N times faster than the sampling rate at the
input. If P*(s) is defined as the pulse transform of p(t),
the Laplace transform of the intermediate result sampled at
the expanded rate, Q*(s)n, is given by (Ref. 2, pp. 221-222;
Ref. 3, pp. 82-85, 353-357)

N~}
Q(v=) [G( 8)8'”'/"].}’ *(s)e /N
w0



The z-transform of this expression is given by
N-1

g(2)y = E Z{G(a)e”""} p(z)z"'/‘"
=0

N-1
= 3 T gLk + /M) T1etb"MITep( )

=0 kD0

= E g(mT/N)e ™ T*/Np(2)

mp0

= G(2)vp(2)

where the development includes the substitution of m/N =
k + n/N (Ref. 3, p. 357). Hence, G(2)n can be obtained
from the ordinary z-transform (J('z) by the replacements

G(2)n = [G()] . pm
T=T/N

Thus, the multirate z-transform of the output of a multirate
sampled system is obtained from the ordinary z-transform of
the input and the multirate z-transform of the model (with its
associated data hold). In terms of a simulation model, there-
fore, the z-transform representation of one subcycle of the
model is sufficient for an analysis of a multirate system, pro-
viding the decimated output can be obtained from the multi-
rate output.

Because of this relationship, it is natural to define the
multirate cycle time as 7 = T'/N, where 7 represents one
subcycle of the model. The z-transform operator is given by

z=cos(wT) + jsin{wT) = cos(Nwr) + jsin( Nwr)
Multirate Signals

The signal g( z)y represents data at the expanded sam-
ple rate. Because of its extended Nyquist limit, fy = N/2T,
it contains frequency content beyond the Nyquist limit im-
posed by the final (output) sampler, fr = 1/2T. As will be
shown in the next section, the baseband of interest ( f < fT)
is recovered in the ESM via a low-pass filter. This filter may
be a data hold.

Without the low-pass filter, the spectrum of g(2)x
would contain not only the baseband frequencies of inter-
est(ie., f < fr = 1/2T) at the I/O level of computation,
but also images of the baseband centered at harmonics of
the original sampling frequency. This extended frequency
content would occur at all multiples of the original sampling
frequency, limited only by the expanded Nyquist frequency,
N fr = fy, beyond which nothing may be observed from a
discrete model.

In a real-time multirate simulation environment, a non-
linear model may also generate frequencies beyond fr (up
10 fy). Indeed, the reason for implementing a multirate

model is usually the high-frequency content gencrated within
amodel by internal nonlinearities and feedback paths (which
require algorithmic approximations in the convolution to a
discrete realization). Hence, it is sometimes observed that a
smaller effective cycle time (than the 1/O cycle time) is re-
quired to attain numerical stability.

The consequences of multirate processes, however, de-
serve some discussion. If a smaller internal cycle time is
required, then the discrete model may produce frequency ac-
tivity beyond fr. If these frequencies are present in the out-
puts of multirate componeats, then upon decimation to the
1/O rate, these signals will alias into the I/O bandwidth and
will appear at some other frequency location; this will alter,
and possibly destroy, the integrity of the model. This phe-
nomenon was reporied in Ref. 4, wherein an “aliasing equa-
tion” was provided to show that aliased frequencies may ad-
versely influence the pilot/simulator bandwidths, especially
in rotorcraft models.

Good reason exists for implementing a multirate model,
providing the contaminating frequencies are filtered at the
expanded rate prior to decimation to the 1/O rate (see Refs. 4
and 5). In that case, upon decimation, only attenuated sig-
nals are aliased into the 1/O passband. Filtering algorithms
require special attention, however, because they must not
adversely influence either phase or gain in the pilot-vehicle
bandwidth.

The multirate technique without filtering is often infe-
rior 10 other techniques for attaining stability. Although it
may be attained, the original problem is exchanged for other
problems, ¢.g., aliasing. In certain instances there are alter-
nate solutions for attaining stability; these include algorith-
mic substitutions, purging the model of components that cre-
ate frequency content beyond the 1/O bandwidth, and anti-
aliasing filters in the model.

‘The spectrum of g( z) is thus of interest because activ-
ity beyond fr influences decimated simulation outputs r( z)
via the aliasing phenomenon. However, signals that origi-
nate in a model beyond the 1/ Nyquist frequency cannot be
aliased by the ESM. Fortunately, this is of little consequence
in the determination of effective time delay, which involves
evaluations only at low frequencies.

The Discrete Multirate Model

The behavior of the input data between sample points is
assumed by selecting a data hold. The discrete model G(z)
is obtained from the data-hold assumption (or a combina-
tion of data holds). The data hold serves as a low-pass filter,
which is required in extracting the signal spectrum between
sample points. A temporal shift may also accompany a data
hold. Three holds are of interest here; they may be obtained
from the Newton-Gregory formula (Ref. 2, pp. 31-39). They
are given by
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Ho(8) is the zero-order hold, in which the input is assumed
to remain constant between sample points. It tends to ad-
vance the output by a half cycle from the most recent input
point, although it purports to advance outputs by a full cycle.
Its utility is often overstated because it happens to produce
perfect answers (advanced one cycle) for step inputs. H)(s)
is the first-order hold, in which the input is linearly extrapo-
lated beyond the most recent input point. It tends to advance
the output by a full cycle. H,(s) is the triangular hold, in
which the input is linearly interpolated during the interval
(Ref. 2, p. 288). It delivers an output that is concurrent with
the most recent input.

The multirate discrete transfer function is obtained from

Gi(2)v = Z{Hi(8)F(s)}n

where the subscript 1 is used to keep track of the selected data
hold. At the multirate level of computation, G;( z)y relates
an output to an input. It is important to keep in mind that the
selection of the zero-order or first-order data hold produces
advanced outputs (a time shift).

All three data holds are useful in creating a G(z) that
describes models containing networks of transfer functions
that include feedback paths. Whenever a time advance (shift)
is not required, the use of the triangular hold is highly rec-
ommended. The zero-order hold is not recommended unless
phase is immaterial (as in the case of random inputs), or un-
less it is needed for stability in a feedback loop, in which
a first-order hold implementation could produce a negative
gain margin (unstable discrete realization).

Because G;(z) is transformed to G;(z)y in the ESM,
the data hold is effective over the extended Nyquist limit.
Hence, G;( 2)y tends to match the spectrum of F'( s) beyond
the I/O Nyquist limit. Because of decimation, however, a
different spectrum is observed upon output.

Decimation

The spectrum created from the interpolation process be-
yond the I/O Nyquist limit must be purged from the mathe-
matical representation prior to observation of the decimated
output r(z). “Based upon well known sampling theory, in
order to lower the sampling rate and to avoid aliasing at this
lower rate, it is necessary to filter the signal with a digital
low-pass filter which approximates the ideal characteristic”
(Ref. 6, pp. 302-303):

. 1/N w<n/T
L("")={ 0 w>w/T

A filter that reasonably attains this characteristic is given by

_z'1 ul wN _ 1-2z"!
L(z)—Tzl:z = N
»-=

a term we call the rate conversion factor. It converts spectra
at the expanded rate to spectra at the I/O rate, and is thus an
I/O passband filter. The gain of the rate conversion function
L(2),

|L(2)| = N~Y{sin(wT/2) /sin(wT/2N)|

is plotted in Fig. 2 for N = 2, 3, 4, and 5. The abscissa
of Fig. 2 represents the normalized frequency, with a value
of unity being equivalent to the multirate Nyquist frequency
(x/7).
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Fig. 2. Conversion gain.

The I/O Nyquist frequency after the decimation process
(=/T) is also indicated in Fig. 2; the gain at this frequency
approaches 2 /x as N increases. These curves iliustrate that
the rate conversion factor L( z) does a satisfactory job in at-
tenuating frequency content beyond the 1/0 Nyquist limit.

In order to relate the decimated output r( z) to the input
p( z) we must also include the computer delay per subcycle,
z~'/N. The multirate portion of the ESM is then represented
by the transfer function relationship

W(z) = r(2)/p(2) = 27V L(2)Gi(2)n
Comparisons

The accuracy of W(z) to predict delay times in typ-
ical flight vehicle models can be demonstrated by compar-
ing its results with those obtained using time-series analyses
or real-time simulations. To accomplish this, the delays in
simulation were established using Monte Carlo techniques,



with five random variables. A fifth-order Laplace set of func-
tions was selected as being representative of flight simula-
tion. This set is given by

wiw}
O+ (2 + 2Gwia+ wi)(6? + 2(w2 + wh)

F(s) =

The five random variables were given the ranges
2x<w <4nm

4r<wy <8«
01<¢,6<09
005<A<0.5

The phase angles, and hence the equivalent time delays, can
casily be computed at any given frequency by substituting jw
for s in the Laplace representations. Selecting the observa-
tion frequency as w = x(1/2 Hz) produced 300 random time
delays, as shown in Figs. 3(a), 3(b), and 3(c) by D;. Val-
ues up to about 600 msec were observed using the selected
range of random variables. Time delay is defined in this pa-
per as the negative of the relative phase shift divided by the
frequency.

The time-series outputs of the 300 functions were ob-
tained using a cycle time of 30 msec. Multirate simulations
were performed, in which the number of multiple loops (N)
ranged from one to ten, in sequential simulations. The driv-
ing function, an input to the simulations at the 1/O rate of
30 msec, was a 1/2-Hz sine wave (pemmitting comparison
with the Laplace computations). The multirate portion of
the simulation model was handled by an internal DO LOOP,
within which the cycle time was r = T/N. This was com-
puted for each of the data holds s discussed in this paper, by
use of software developed from the techniques of Ref. 7.

The phase angle from each simulation was computed by
trigonometric least-squares techniques, in which the phase
angle (and resultant time delay) is identified. By differencing
the observed time delay from that obtained from the Laplace
functions, the relative time delay (produced from the discrete
simulation) was computed. The results of these experiments
are presented in Figs. 3(d), 3(¢), and 3(f). This error is pre-
sented as AD, for the various holds.

The first 10 runs of Fig. 3 used N = 1, the second
10 runs used N = 2, etc. For example, runs 91 through
100 used 10 multiple loops.

The results of this analysis show dependence only on
the specific data hold (s) and on the number of multiple loops
(N). The results are independent of the functionality (simu-
lation model!) providing only that the equivalent phase shift
caused by the discrete realization process (data hold) is iso-
lated. From these data, and other data obtained at differ-
ent cycle times, the delay produced by multirate simulations
(with a reasonable bandwidth) is found to be, to negligible
measurement €rror,
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Fig. 3. Monte Carlo results.

1
AD°=ET

AD,=%T(1—1/N)

AD2=-§-T(1+1/N)

whenever the simulation model uses a zero-order, first-order,
or triangular hold. When the simulation model uses some
other data hold or combination of data holds, the relative de-
lay may also be computed, by first determining the equiva-
lent data hold resultant from G(z)n.

Returning to the ESM, we illustrate in Fig. 4 the dis-
crete input-output relationship W( z), which contains all of
the elements necessary (o approximate the time delay in a
multirate simulation model. It accurately predicts all of the
A D; because of the factor 2~1/¥ L( z), which by itself pro-
duces a time delay that is independent of the data hold 1:

Tw = —;-T(l+ 1/N)
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Fig. 4. Multirate portion of ESM.

Considering only the model with its associated data hold
Gi(2)xy at the multirate level of computation, it produces
(at low frequencies) an advance of T'/2 N for the zero-order
formulation (s = 0), an advance of T'/N for the first-order
formulation (¢ = 1), and no change at all for the triangular
formulation (§ = 2). Since phases add, we see that W(z2)
predicts the delays

ADy = Tw —T/2N = -;-T
ADy=Tw -T/N = %T(l ~-1/N)
AD; =Tw—0= %T(1+ 1/N)

which are exactly those observed in the time-series analysis.

Similarly, W(z) can be compared 1o F( s}, the contin-
uum model. If its magnitude and phase closely approximate
F(s) within the I/O passband, the discrete model exhibits
negligible 1/O delay. However, to create consistent discrete
code, the design objective at the subcycle level is to create a
discrete realization such that

2 UNG(2)y = 2N Z{H(s) F(8) }n ~ FY(s)

If this is accomplished, a well-coded model ensues, because
multirate variables are properly advanced for use in suc-
ceeding cycles. Unfortunately, this is inconsistent with the
elimination of 1/O time delays, which is only achievable for
single-pass simulations (N = 1) becaunse L( z) introduces a
time delay for multirate models.

Well-coded models thus display an advance of T/N at
the multirate Jevel, as in the cited first-order data-hold case.
Unfortunately, they also manifest an 1/O time delay entirely
caused by the multirate phenomenon. This delay is a con-
sequence of the rate conversion factor L(z) only, because
the computer delay per subcycle (z=!/) is canceled by the
time advance in G(z)y for each subcycle. In this case L( 2)
produces the phase shift

¢=—%WT(1 - 1/N)

or time delay AD,; . Hence, for well-coded models, a time de-
lay penalty is invariably associated with multilooping. The

delay converges to the value (1/2)T for large N. Since this
time delay is constant, it is more properly referred to as a
transport delay. “Transport delay” is defined here as the time
delay of a discreie realization, obtained from phase measure-
ments relative to the desired continuum system. Well-coded
models demonstrate an invariant transport delay over a rea-
sonable range of frequencies.

As has been shown, models not in this class are de-
graded by both L(z) and the subcycle delay z='/¥. For
example, formulations that ignore the required advance in
G(2)x show decreasing time delay for increasing N (with
the same limit). Hence, if G{z)» has only the phase char-
acteristics of F'(s) and does not include the cyclic advance,
the time delay obtained from z~}/NL(z) is AD,.

Models displaying an effective triangular data hold
have this delay if an advance, which is needed for the proper
synchronization of multirate variables, is not present some-
where in the computations. The Ames simulation system,
for instance, has such an advance in its kinematic model.

Models with an effective zero-order data hold accrue a
delay of (1/2)T, independent of N. Note that for large N
this is the general limit.

If a computationally unstable simulation model can be
stabilized by use of alternate algorithms, thereby avoiding
aliasing and the multirate delay penalty, the resultant model
"will probably be equivalent to, or even better than, that ob-
tained using multiple loops, unless “properly designed multi-
rate digital compensators” are implemented (Ref. 3, p. 353).
Hence, the delay caused by these more stable algorithms may
sometimes be tolerable in simulating networks of transfer
functions.

If multirate processes are not used ( N = 1), the discrete

input-output relationship reduces o
izl = z~1 : =z}
" -2 Z{H(s)F(8)}=2z""G(2)

which again shows that the mode! should be predictive to
compensate for the one cycle of delay. It also shows that
delays or advances should be represented explicitly in the
ESM; they should not be implied within transfer functions.
This means that G( z) should represent a concurrent transfer
function, such that its output representation explicitly shows
its advancing functionality, if any, with respect to the input
time.

Concurrent Transfer Functions

Concurrent transfer functions relate the output to the
time point of the input; any time shift is shown explicitly in
the output representation. An example is given here to avoid
the confusion that sometimes arises in reducing difference
equations to z-transform notation.

Confusion can be avoided in convoluting difference
equations to z-transform notation by taking the most recent

6



input as having the subscript k and letting the output receive
its appropriately shifted index. Then variables with the sub-
script k are assigned the power z° = 1 in the z-transform
representation. For example, the Euler integration algorithm
can be represented by

Vil Sy + ka

where the temporal advance is obvious from the subscripts
and can be shown explicitly in the z-transform output
representation,

zv(z) _ T

w(z) 1-—2z!
In this preferred form the error relative to perfect integra-
tion (1/s) is given by the ratio of performance to desired
performance,

1 [zv(z)] -
1/s | w(2)
_ wT[sinwT + j(1 — coswT)]
- 2(1 — coswT)

JwT
1-2z1

where the phase error is ¢, = (1/2)wT. Since time delay
has been defined as the negative of the phase error divided
by the frequency, this expression produces a time delay of
~(1/2)T', or rather, a time advance of (1/2)T" with respect to
the input point. When the computer delay T is explicitly
included, the output at the end of the cycle shows a net delay
of (1/2)T with respect to the expected output at the end of
the cycle.

The representation of a simulation model using con-
current z-transforms is an important feature of the ESM, in
which delays due to procedural code (computer cycles) are
shown explicitly. An illustration is provided in the next sec-
tion, of a model implemented using the Ames techniques.

A Simulation

Consider the second-order transfer function

K

FO) = 5oTev it

where K = 355.3, L = 26.39,and M = 355.3. This sys-
tem has an undamped natural frequency of 6 (3 Hz) and
a damping ratio of 0.7. Because of the constant parameters
and the lack of nonlinear elements in this system, the transfer
function could be implemented using discrete transfer func-
tion techniques. However, for more generality, the parame-
ters are not here considered as constants, and the addition of
nonlinear elements (in simulation) is not precluded. A model
containing a nonlinearity usually requires that the integration
processes be separated.

The second-order sysiem may be illustrated in a dis-
crete realization by explicitly including the computer delays

caused by feedback paths and the two integrations I4(z) and
Ir(z),as shownin Fig. 5. The multirate z-transform G(z)n
is thus

2/Nu(z) KIa(2)nIr(2)n
o(z) 1+ z7VNI4(2)N[L + Mir(2)N]
z2v(z)
2u(2)
L) s

Fig. 5. Second-order model

In this form the predictive responsibility of the integra-
tion I4(2) is well illustrated. In the flight simulation facility
at Ames this particular integration is handled by the Adams-
Bashforth algorithm, which may be derived from H;(s)/s,
and it may be represented by the difference equation

1
Vel =i+ ‘Z_T(3Wk - Wi-1)
At the multirate level this has the z-transform (again avoid-
ing confusion)

2My(z) _(1/2)7(3 —z"'/N)
w(z) 1—2-lU/N

which manifests considerable phase lead, as required. The
second integration algorithm at Ames is derived from the tri-
angular data hold, and it is usually called the trapezoidal al-
gorithm. Since this algorithm is not a predictor, it is naturally
in concurrent form:

Iy(2)y =

1
Ug = g1 + ET(W: + v1)

The z-transform of the trapezoidal algorithm Ir(z) at the
multirate level is given by

u(z) _ (1/2)7(1+ 271/N)
v(z) - 1—2-IIN

which does not produce phase error with respect to perfect
integration. The combination of these two algorithms has
two important features pertinent to the discrete realization
of vehicle kinematics in the Ames simulation environment.
The acceleration-to-velocity integration process absorbs the
burden of advancing the phase, approximating a temporal

Ir(z)y =
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advance of one computer cycle. The velocity-to-position in-
tegration algorithm then maintains the correct phase relation-
ship (90 shift), ensuring that consistent velocity and position
elements are available. Concomitantly, this scheme relieves
programmers of the burden of time-shifting the outputs of
various subsystem modules; hence, the triangular hold may
be widely used, as recommended.

From the preceding discussion, we see that the total
computer delay T is absorbed at the subcycle level by the
term z=!/¥ in the ESM. This is shown in Fig. 3, where the
computer delay is given per subcycle. G(z)y must then
manifest the phase lead that is representative of one subcycle,
T = T/N, in addition to the deliberate model phase charac-
teristics of F'(s).

Example

As an example of the accuracy of the ESM, we consider
the case in which the entire simulation model consists of just
the Adams’ integration algorithm, G(2) = I,(z), and we
create the error with respect to perfect integration. Consult-
ing Fig. 4, we see that we must include both the subcycle
time delay and the rate conversion factor L(z) in a multi-
rate model. Using mixed notation, this produces the relative
error

E(z) = W(2)/(1/s) = jwG(2)nz""N L(2)

_ JwT(3 - 2~UNY2=UN(] — 271)
2N2(l — z—l/N)z

from which the phase error is calculated:
¢c = an" {sin(wT/N) /13 - cos(wT/N)1} - 5uT

For determining transport delay, only the low-frequency re-
gion is of interest; this is easily extracted from the preced-
ing equation by use of the small-angle (wT'/N) assumption.
This produces AD; . Since this is the same as the delay pre-
viously produced from examining just the rate conversion
function L( z) , we here have a well-coded model (manifest-
ing the multirate delay for N # 1).

The exact phase error can also be determined in this
case. This requires an alternate derivation, because for com-
parison purposes we must avoid the ESM. Consider the sum
of a geometric progression,

>

Substitute this into the expression for I4( z)y. The algorithm
then takes the form

1-2"1

S1-zW

N-1
In(2)n = %‘r [1 +21 -z YW
w=0

For constant inputs for each of N consecutive subcycles, the
summation in the above equation collapses to the sum of N
constants:

N-1

E z=VYN¥ o N (with constant inputs)

Use of this substitution eliminates the subcycles from the ex-
pression for I4( z)y, as well as the requirement for rate con-
version. That is, using lower brackets (“floor” operator) to
denote the least integer operation, the sequence

1
vi/N = V-1y/N + S T{3PpyN) - PLk-1)/N) }

and the sequence

1
vg=vg_ + ET{( 1+ 2N)px — px-1}

deliver the same answers for each k/N = K. The entire
simulation model, including the total computer delay z~*,
then becomes

(1/2)7(14+ 2N - z71) =
1-2z"!

Wi(z) = }(2)nz! =

This is an exact expression for the response of the discrete
system. Its error with respect to perfect integration is given
by the relative error

E'(2) =W'(2)/(1/s) = juW'(2)

which produces a phase error of
' -1 [@n[(1/2)wT]I(N — cos(wT)]
¢, = —tan [ 1+ N — cos(wT) ]

Extracting just the small-angle (wT") performance from this
expression also gives the delay AD; .

By comparing z-transforms we can get a feel for the ac-
curacy of the approximations. Forming either E(z)/E'(z)
or W(z) /W'(z) and extracting the relative time error gives
the results shown in Fig. 6 (the error is zero for N = 1).

Figure 6 demonstrates that for frequencies much less
than the 1/O Nyquist limit, the differences are negligible.
Since the “primed” expressions are an exact model of the
system, the time delay computed from the ESM in this case
displays negligible error.
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Fig. 6. Adams’ ESM error.

The ESM should accurately predict the design phase
characteristics for channels represented in z-transform no-
tation. It has been our experience that if this is not the case,
then either the model is not well coded, or the cycle time is
not compatible with the frequency content of the system.

For more complicated simulation models the analysis of
error using the ESM is best handled by time-series analysis,
because the algebraic equations become formidable.

Additional Components

The consequences of assumptions (such as linearity) in
the ESM are well beyond the scope of this paper, and the
reader is invited to explore the limitations of z-transforms
in the cited references. However, the benefits of the ESM
are indeed great, and for the simulation of flight vehicles the
approximations are of little consequence. This is because the
spectra of aircraft responses are not competitive with typical
1/0 Nyquist frequencies in simulation.

The most important feature of the ESM is its multiplica-
tive form for individual components,

W(z) = IWi(2)

which means that the individual phases add, as do the effec-
tive time delays,

D=ZXd=-Zé/w

Each component of the simulation system may thus be con-
sidered independendy.

We now turn our attention to components other than the
simulation model itself and to a demonstration of their inclu-
sion into the multiplicative ESM. An overview of the com-
ponents included in this model is given by the architecture
of Fig. 7, where the time delays p; are caused by the compo-
nents W;(2).

Pilot Input Delgy Source
m Pa A/D
A Pe D/D input
[ Wo Po Model/subcycle
Wi | P Deloy/subcycle
(W2 | P2 Conversion
Ws Ps CGl Compensation
Wio P  D/D output
W3 Ps D/A
Pe D/D CGl
P CG| Asynchronous
Ps CGl Pipeline
v v
CGl Analog
Fig. 7. Equivalent system model.

The following delay sources, listed here in the notation
of Fig. 7, have already been discussed: the simulation model
per subcycle, Wo (z) = G(z)n, which, when divided by the
baseline function F'( s), is assumed to have a relatively con-
stant time delay po for low frequencies; the transport delay
function per subcycle, Wi (z) = 2z~'/¥, which produces a
time delay p; = T/N per subcycle; and the conversion func-
tion, Wa(z) = L(z), which produces the multirate delay
penalty p; = (1/2)T(1 ~ 1/N).

Analog Output

The digital-to-analog signal (D/A) is given to a good
approximation by

ra(z) = z_“mr(z)

This is demonstrated as follows. The Newton-Gregory ex-
trapolation formula for creating representations of data holds
is developed in Ref. 2, pp. 31-34. By including just the first
term of the formula, the zero-order data hold discussed in the
section “The Discrete Multirate Model” is produced, as de-
veloped on pp. 34-36 of Ref. 2 and pp. 42-46 of Ref. 3. This
may also be written

Ho(jw) = Tho(wT)el /25T



where the gain factor,
_ sin[(1/2)wT]
ho(wT) = = 7yuT

remains close to unity for small wT products, and is ofien
ignored in sampled-data systems. As developed in Ref. 2,
pp. 123-124, when this element is combined with a plant with
the transfer function K (jw), the overall loop pulse transfer
function is a complex expression approximated by

HK*(jw) = ho(wT)e~ /5T K ( ju)

when conditions are such that K(jw) is low pass rel-
ative to the Nyquist criterion. Notice that the fac-
tor T disappears. Furthermore, “for low frequencies,
(sin(1/2)wT]/[(1/2)wT] is approximately unity, so that
finally

HK*(jw) o e~ 2T K (jw)

In words, the loop transfer function is approximately the
equivalent of replacing the sample and hold operation by a
pure time delay of half a sampling period” (Ref. 2, p. 124).
Hence, the D/A conversion is

Wi(2) = 2~

resulting in the time delay p3 = (1/2)T.
Conversion Delay

An analog-to-digital delay function is included in Fig. 7
as W, ( z), producing the time delay py. Although A/D dy-
namics produce a delay too small to be of concern here, low-
pass prefilters are sometimes used to suppress electrical noise
in a facility. Although this noise is generally of high fre-
quency, it aliases into the Nyquist bandwidth during the sam-
pling process. Since low-pass filters usually produce time
delays in the low-frequency bandwidth, their phase charac-
teristics must be measured and included in the ESM as the
time delay pq.

At Ames Research Center the techniques of common
mode rejection have succeeded in reducing laboratory noise.
For example, the simulation complex that drives the Verti-
cal Motion Simulator (VMS) does not require A/D prefilters.
Hence, in a clean environment such as this, p4 = 0.

The values of pe, py, and pyo are all digital-to-digital
(D/D) delays caused by discrete processors. Each of these
components contribute approximately 2 msec of delay in the
Ames simulation facility.

CGI Delay

A CGI system usually has projection logic within its
first pipeline processor, which accounts for asynchronous
data arrival from the simulation computer. The data are usu-
ally received via an interrupt into the first processor while
the processor continues to work on previously acquired data.

The difference between the time of use and time of arrival
is used for extrapolation and effectively cancels the asyn-
chronous delay. This delay, given by p7, is therefore approx-
imately zero. If the projection logic were disabled, the asyn-
chronous delay would be approximately one-half the simu-
lation computer's cycle time, T'/2.

The CGI pipeline delay function, however, is signifi-
cant. It is given by

Wi(2) = z=nIT

The CGI pipeline delay is discussed in Ref. 8. It is generally
on the order of 100 msec.

CGI Compensation

The CGI compensation scheme used at Ames is dis-
cussed in Ref. 8. It compensates for the pipeline delay ps
by producing a phase lead, equivalent for small frequencies
to a time lead ps (negative valued). From the reference, we
see that the compensation algorithm uses the velocity history
at the /O frame rate. The algorithm may be expressed

ue(z) _ 8(2) o~ 1
v(2) " w(2) * gb,z

where N is an odd integer, reported in the literature for the
case of N = 3 (Ref. 8). The b; coefficients are functions of
the cycle time T', the projection interval P, the pipeline delay
ps, and a mned frequency wy, nominally set to about 3 Hz
(see Ref. 8, p. 7). Using these parameters, CGI pipeline delay
essentially vanishes in the pilot’s bandwidth, as discussed in
the reference, i.e., ps + ps = 0.

Consulting Fig. 7, we can summarize the ESM as fol-
lows: (1) The model Wy contains the desired phase rela-
tionships plus one subcycle of time advance. (2) The delay-
per-cycle penalty p; is one subcycle of delay. If the prod-
uct Wo W, constitutes a well-coded model, the delay caused
by the discrete realization process vanishes. (3) The D/A
penalty p; is one-half the mainframe cycle time. (4) The
A/D penalty p4 is negligible when a prefilter is not required
or a good prefilter is used. (5) The CGI compensation algo-
rithm Ws cancels the pipeline delay ps for frequencies in the
pilot’s bandwidth. (6) Digital-to-digital delays are approxi-
mately 4 msec; these occur as pg + pg for the A/D through
CGI path, and as py + pyo for the A/D through D/A path. (7)
The asynchronous penalty p; vanishes because of projection
logic. (8) The multirate penalty p; vanishes if multiple loops
are not used.

In the Ames flight simulation facility, when a multi-
rate model is not implemented, delay from the pilot to the
CGI display is approximately 4 msec and delay from the
pilot to the analog outputs of simulations is approximately
4+ T'/2 msec, or about 15 msec. These numbers are consid-
crably less than the 150-msec range of values easily obtained
from component-level experiments.
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Conclusions

An equivalent system model may be created as the
product of individual simulation components expressed as
z-transforms,

W(z) = 1W;(2)
Because of this relationship, the individual phases and com-
ponent time delays are additive. This permits the inde-
pendent investigation of various delay sources in flight
simulation.

The time-delay penalty for well-coded multirate models
(N loops per 1/O cycle) is

1
= 7T(1-1/N)

Although procedures for handling multiple loops have been
established, the use of a multirate model is not encouraged
because of the I/O time-delay penalty and because of prob-
lems with aliasing. If alternate solutions are not available
for attaining computational stability, then a multirate model
should be accompanied by filters that attenuate spectra at the
expanded rate.

Simulation input-output relationships that can be ex-
pressed in z-transform notation can be included in the equiv-
alent systems model using mathematical relationships de-
scribed in this paper. Altemately, time-domain software is
capable of measuring delays, which may then be used in the
equivalent systems model for quality control. A determina-
tion may then be made as to whether the model is well coded.

Computer algorithms, notably the predictive integration
algorithm and the CGI compensation algorithm, are subsets
of the equivalent systems model, as well as subsets of the

flight simulation system at Ames. They dramatically reduce
total system delays during flight simulation from the delays
observed during component-level experiments.
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